24(R)-ETHYLLOPHENOL FROM SOLANUM MELONGENA SEEDS

TOSHIHIRO ITOH, TSUTOMU TAMURA, MASAKAZU SAGAWA, TOSHITAKE TAMURA and TARO MATSUMOTO

College of Science and Technology, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo, 101 Japan (Received 12 March 1980)

Key Word Index—Solanum melongena; Solanaceae; seeds; 4α -methylsterol; 24(R)-ethyllophenol; 13 C NMR spectroscopy.

During the course of our studies on the sterol and triterpene alcohol constituents of Solanaceae, 24-ethyllophenol $(4\alpha$ -methyl-24 ξ -ethyl-5 α -cholest-7-en-3 β -ol) has been isolated from the 4α-methylsterol fraction of Solanum melongena seed oil, but the configuration at C-24 of the sterol remained to be determined [1]. Because 24-ethyllophenol was the major component (65%) in the 4α -methylsterol fraction of the oil [1], and is considered to be an important intermediate in the biogenesis of steroids in the plant, the configuration at C-24 of this sterol appears to be significant. Recently ¹³C NMR spectroscopy has proved useful in determining the configuration at C-24 of alkyl sterols [2-4]. In this study, the technique has been applied to determine the C-24 configuration of the 24ethyllophenol isolated from S. melongena. Off-resonance decoupling, acetylation and ketonization shifts, and lanthanide-induced shifts (LIS) were all used to aid assignment.

Most of the side chain carbons of the epimeric mixture of 24(R)- and 24(S)-ethyllophenols (1 and 2), prepared from citrostadienol (4α-methyl-5α-stigmasta-7,Z-24[28]-dien- 3β -ol) by hydrogenation, showed split signals in the 13 C NMR spectrum, which enabled differentiation between the epimeric pair. The side chain signals of 1 and 2 were assigned as shown in Table 1 by direct comparison with those of the published spectral data[3] of sitosterol $(24[R]-24-ethylcholest-5-en-3\beta-ol or stigmast-5-en-3\beta$ ol) and its 24(S)-epimer, clionasterol, respectively. When the ¹³C NMR spectrum of 24-ethyllophenol isolated from S. melongena was recorded, only the signals due to the 24(R)-epimer were observed as the side chain carbon signals, and the sterol therefore was identified as 24(R)ethyllophenol (1). The signals arising from C-7, C-10 and rings-C and -D carbons (C-8, C-9 and C-11 through C-18) of 24(R)-ethyllophenol (1) were assigned by the comparison with those reported for 5α -cholest-7-en-3 β ol [5] and 24(R)-methyl-5 α -cholesta-7,E-22-dien-3 β ol [6]. Furthermore, the characteristic changes that occur either on acetylation [5–8] or ketonization [7, 8] of the 3β hydroxyl group enabled the signals for C-1 through C-6 and C-19 to be assigned. Assignment of a remaining C-30 (4α-methyl group) carbon signal was facilitated by the ketonization shift value ($\Delta \delta [4-1] = -3.7$) which was identical with that reported for cycloeucalenol (4\alpha,14\alpha,24trimethyl- 9β ,19-cyclo- 5α -cholest-24[28]-en- 3β -ol), a 4α methylsterol [8]. The foregoing assignment (Table 1) was well supported by the LIS experiment in which the spectra were measured with various amounts of Eu(fod)₃, and then by the estimation of the approximate spacial distance between the expected co-ordinating site (hydroxyl

function) of a lanthanide ion and the carbons under consideration.

The 24-ethyl group of 24-ethyllophenol isolated from S. melongena seed oil was thus unequivocally determined to have a 24(R)-configuration by ¹³C NMR spectroscopy,

Table 1. 13 C NMR chemical shifts (δ) of 24-ethyllophenol and its derivatives

Carbon	1	2	3	4	1 LIS*
C-1		37.0		39.4	3.6
C-2		31.0		38.0	10.9
C-3		76.2		213.3	24.3
C-4	•	40.2		45.6	5.4
C-5		46.7		50.2	2.9
C-6		26.7		28.0	1.9
C-7	1	117.4		117.1	1.1
C-8	1:	139.1		139.2	1.4
C-9		49.7		49.2	1.4
C-10	;	34.8		35.1	3.4
C-11	:	21.4		21.5	1.2
C-12	;	39.6		39.6	0.8
C-13	4	43.4		43.3	0.6
C-14	;	55.0		54.9	0.7
C-15	-	23.0		23.0	0.3
C-16	2	28.0		28.0	0.5
C-17	:	56.0		56.0	0.6
C-18		11.8		12.0	0.4
C-19	:	14.2		13.7	2.7
C-30		15.2		11.5	7.0
<u>C</u> OMe				-	_
COCH ₃	-		21.3	_	_
C-20	36.6	36.7	36	.6	0.4
C-21		18.9		18.9	
C-22	:	33.9		33.9	
C-23	26.2	26.5	26	.2	0.2
C-24	45.9	46.1	45	.9	0.2
C-25	29.1	29.0	29	.1	0.3
C-26	19.8	19.0	19	.8	0.2
C-27	19.0	19.6	19	.0	0.2
C-28	2	23.1		23.1	
C-29	12.0	12.3	12	.0	0.5

^{*}Lanthanide-induced shift ($\Delta\delta$): Extra shift produced by the addition of 100 mg of Eu(fod)₃ to the solution of 100 mg of substrate/0.9 ml of CDCl₃.

2492 Short Reports

1
$$R_1 = \alpha - H, \beta - OH, R_2 = a$$

2 $R_1 = \alpha - H, \beta - OH, R_2 = b$
3 $R_1 = \alpha - H, \beta - OCOMe, R_2 = a$
4 $R_1 = O, R_2 = a$

and the carbon signals of the sterol were fully assigned. 24-Ethyllophenol has also previously been isolated from the same genus, *S. xanthocarpum*, and demonstrated to have a 24(R)-ethyl group by the chemical correlation with carpesterol (22[R]-hydroxy-6-oxo-4 α -methyl-24[R]-ethyl-5 α -cholest-7-en-3 β -yl benzoate) [9].

EXPERIMENTAL

Recrystallizations were performed in Me₂CO-MeOH. Mps taken on a heated block were uncorr. The steryl acetate (3, mp 153-155°) was isolated from the acetylated 4α-methylsterol fraction separated from the unsaponifiable lipid of Solanum melongena seed oil [1]. Hydrolysis of the acetate (3) by refluxing for 1 hr with KOH in MeOH afforded free sterol (1, mp 175.5-176.5°). Oxidation of the free sterol (1) with CrO₃ in pyridine as described previously [10] gave ketone (4, mp 154.5-155.5°), A C-24 epimeric mixture of 24-ethyllophenol (1 and 2) was prepared from citrostadienol by partial hydrogenation (PtO₂ catalyst, Et₂O soln). ¹³C FT NMR spectra were recorded on a JNM FX-100 spectrometer operating at 25.05 MHz using 0.1-0.26 M solns in CDCl₃. The chemical shifts (δ) are expressed in ppm relative to TMS and are estimated to be accurate to ± 0.05 ppm. The probe temp. was ca 30°, FT NMR measurement conditions were as follows: spectral width: 5 or 6 KHz, pulse width: 6 μsec, acquisition time: 2 or 2.5 sec, and number of data points: 8192. The LIS experiment was performed using commercially available Eu(fod)₃ (tris[heptafluorobutanolypivaloyl-methanato]europium).

Acknowledgement—We are grateful to Dr. T. Takido for the measurement of ¹³C NMR spectra.

REFERENCES

- Itoh, T., Ishii, T., Tamura, T. and Matsumoto, T. (1978) *Phytochemistry* 17, 971.
- Seo, S., Tomita, Y. and Tori, K. (1978) J. Chem. Soc. Chem. Commun. 319.
- Wright, J. L. C., McInnes, A. G., Shimizu, S., Smith D. G., Walter, J. A., Idler, D. and Khalil, W. (1978) Can. J. Chem. 56, 1898
- Koizumi, N., Fujimoto, Y., Takeshita, T. and Ikekawa, N. (1979) Chem. Pharm. Bull. 27, 38.
- Tsuda, M. and Schroepfer. G. J., Jr. (1979) J. Org. Chem. 44, 1290.
- Abraham, R. J. and Monasterios, J. R. (1974) J. Chem. Soc. Perkin Trans. 2, 662.
- Reich, H. J., Jautelat, M., Messe, M. T., Weigert, F. J. and Roberts, J. D. (1969) J. Am. Chem. Soc. 91, 7445.
- Khuong-Huu, F., Sangare, M., Chari, V. M., Bekaert, A., Devys, M., Barbier, M. and Lukacs, G. (1975) *Tetrahedron Letters* 1787.
- Kusano, G., Beisler, J. and Sato, Y. (1973) Phytochemistry 12, 397
- 10. Itoh, T., Tamura, T. and Matsumoto, T. (1975) Lipids 10, 454.